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ABSTRACT

Thanks to the recent advance in the multimedia techniques,

increasing research attention has been paid to the virtual try-

on task, especially with the 2D image modeling. The traditional

try-on task aims to align the target clothing item naturally to

the given person’s body and hence present a try-on look of the

person. However, in practice, people may also be interested in

their try-on looks with different poses. Therefore, in this work,

we introduce a new try-on setting, which enables the changes

of both the clothing item and the person’s pose. Towards this

end, we propose a pose-guided virtual try-on scheme based on the

generative adversarial networks (GANs) with a bi-stage strategy. In

particular, in the first stage, we propose a shape enhanced clothing

deformation model for deforming the clothing item, where the

user body shape is incorporated as the intermediate guidance.

For the second stage, we present an attentive bidirectional GAN,

which jointly models the attentive clothing-person alignment and

bidirectional generation consistency. For evaluation, we create a

large-scale dataset, FashionTryOn, comprising 28, 714 triplets with

each consisting of a clothing item image and two model images in

different poses. Extensive experiments on FashionTryOn validate

the superiority of our model over the state-of-the-art methods.
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1 INTRODUCTION

It is reported that the retail sales of T-mall1 in 2018 Double 11

shopping carnival have exceeded 46.9 billion US dollars, among

which fashion apparel and clothing sales contribute 20.3%2. The

huge economic value of online fashion market demonstrates

people’s great demand of online fashion shopping. Nevertheless,

lacking the physical try-on, online fashion shopping is always

criticized for its poor user experience. Owing to the recent advances

in computer graphics, there emerge several practical services, such

as TriMirror3 and Fits Me4, which work on synthesizing the try-on

looks for users based on their 3D body shape measurements, desired

poses and target clothing items. Despite that 3D-based methods

have achieved promising success, the huge labor costs for 3D data

annotation and potential economic costs for scanning equipment

largely limit their real-world applications.

Fortunately, for more intuitive exhibition, fashion-oriented e-

commerce websites, such as Zalando5, usually display well-posed

fashion model images wearing their products as well as the pure

product image. In a sense, the tremendous try-on images online

have opened the door to the possibility of fulfilling the virtual

try-on task with the economic 2D modeling. Although several

pioneer researches have achieved promising performance, most of

existing efforts can only generate the single-view try-on result, that

is, keeping the person’s pose unchanged while simply changing

the clothing item. However, in reality, people may want to check

different views of themselves in the new clothing item before

making the decision on whether to buy it or not. In the light of this,

in this work, we define a new virtual try-on task, where given a

person image, a desired pose, and a target clothing item, we aim to

automatically generate the try-on look of the person with the target

clothing item in his/her desired pose, as illustrated in Figure 1.

Indeed, advanced image generation models such as Generative

Adversarial Networks (GANs) [8] and Variational Autoencoders

(VAEs) [15] have demonstrated remarkable success in various image

generation tasks. However, it is non-trivial to directly apply these

methods to fulfil our proposed task due to the following challenges.

1https://www.tmall.com/.
2http://www.askci.com/news/chanye/20181116/1139281136843.shtml.
3https://www.trimirror.com/.
4https://fits.me/.
5https://zalando.com/.



Figure 1: Illustration of our try-on task.

1) In the context of virtual try-on, the body shape and the desired

pose of the person highly affect the final look of the target clothing

item on the person. Accordingly, how to properly deform the new

clothing item and seamlessly align with the target person is a major

challenge. 2) How to generate the try-on image that maintains

not only the detailed visual features of the clothing item, like the

texture and color, but also the other body parts of the person, while

changing the person pose is another tough challenge. And 3) there

is no large-scale benchmark dataset that can support the research of

our new virtual try-on task. Therefore, how to create a large-scale

dataset constitutes a crucial challenge.

To address the aforementioned challenges and guarantee the

try-on quality, we present a pose-guided virtual try-on scheme

with two stages, similar to several state-of-the-art coarse-to-fine

pipelines [21, 41]. In particular, in the first stage, we propose a shape

enhanced clothing deformation approach working on deforming

the given clothing item naturally to match the target body shape

of the person, which can be internally predicted from the person’s

desired pose. In the second stage, our scheme focuses on generating

the try-on image based on the deformed clothing item above, the

conditional person image and the desired pose. In particular, we

present an attentive bidirectional generative adversarial network to

synthesize the realistic try-on image, namedAB-GAN,which jointly

models the attentive clothing-person alignment and bidirectional

generation consistency. Pertaining to the evaluation, we create a

new large-scale FashionTryOn dataset from the fashion-oriented

e-commerce website Zalando6, consisting of 28, 714 triplets.

The main contributions are summarized as follows:

• We present a novel pose-guided virtual try-on scheme in a

bi-stage manner. To our best knowledge, we are the first to

address the new task of generating realistic try-on images

with any desired pose, which has both great theoretical and

practical significance.

• We propose a shape enhanced clothing deformation model,

which aims to generate the warped clothing item based on

both the target body shape and the desired pose. In addition,

we present an attentive bidirectional generative adversarial

network to synthesize the final try-on images, which

simultaneously regularizes the attentive clothing-person

alignment and the bidirectional generation consistency.

• We create a large-scale benchmark dataset, FashionTryOn,

and extensive experiments conducted on that demonstrate

the superiority of our proposed scheme over the state-of-the-

art methods. Moreover, we have released the FashionTryOn

dataset and codes to benefit other researchers7.

6https://zalando.com/.
7https://fashiontryon.wixsite.com/fashiontryon.

2 RELATEDWORK

This work is related to image synthesis, pose-guided person

synthesis and virtual try-on.

Image Synthesis. In the image synthesis domain, GANs have

achieved compelling success in various tasks, ranging from the

general image generation [27, 35, 36, 38, 41], to the pose-guided

person synthesis [1, 5, 6, 21, 22, 26, 29, 32, 39]. In particular, one

family of its derivatives, conditional GANs, have been extensively

studied recently, especially in image-to-image translation tasks,

like the style transfer [3, 4, 17, 23] and virtual try-on [12, 16],

where certain conditional images should be given. For example,

Isola et al. [11] employed the conditional GAN to fulfil the edge-to-

image task, where a UNet-based architecture with skip connections

is utilized. In addition, Zhu et al. [40] presented a CycleGAN

in the context of style transfer, which focuses on regularizing

the cycle consistency and can be trained in an unsupervised

manner. Although both methods above have shown remarkable

performance, the common assumption they share that the structure

of the input is roughly aligned with that of the output is too

rigorous and greatly hinders their practical applications in tasks

with large misalignments, such as the virtual try-on and pose-

guided person synthesis. Towards this end, Siarohit et al. [29]

embedded the deformable skip connections to the decoder with

affine transformations, while Dong et al. [5] introduced a Soft-

Gated Warping-GAN with the geometric matching to alleviate

the misalignment. Meanwhile, instead of one-stage models, some

researchers explored the coarse-to-fine manner [21, 39], where

a coarse intermediate image would be synthesized to help cope

with the misalignment. As in our try-on task that involves large

input-output misalignment, we follow the coarse-to-fine strategy

and decompose our pipeline into two stages: 1) a shape enhanced

clothing deformation module is introduced to deform the clothing

item naturally, and 2) an attentive bidirectional GAN is proposed

to synthesize the final try-on image.

Pose-Guided Person Synthesis. Recently, due to its great

value in person re-identification and movie/game making, many

efforts have been made on pose-guided person synthesis [1, 5, 6,

21, 22, 26, 29, 31, 32, 39], namely, the person image synthesis with

pose transformation. For example, Ma et al. [21] introduced a PG2

network, which works on first synthesizing an intermediate coarse

image that captures the global structure and then generating the

final image by rendering the appearance details with the adversarial

training. Later, to boost the performance, several researchers

resorted to separating the human appearance from the image layout

directly. For example, Ma et al. [22] presented a BodyROI7 model

that particularly disentangles the three essential aspects of the input

image, namely the foreground, background, and pose, and then

generates the target person image based on the embedding features

of all three aspects. In addition, Guha et al. [1] presented a modular

generative neural network that decomposes the conditional image

into different body parts and based on that synthesizes the target

image. Different from the above methods that fulfil the task in a

supervised manner, several unsupervised efforts have been made

to alleviate the burden of data annotation. In particular, Albert

et al. [26] proposed an unsupervised conditional bidirectional

generator, where the generated image is able to rendered back



to the original one. In addition, Song et al. [31] introduced an

unsupervised person image synthesis framework, comprising two

key components: semantic parsing transformation and appearance

generation. Beyond existing efforts, we work on simultaneously

change the clothing item and pose of the person rather than simply

performing the pose transformation.

Virtual Try-On. Existing virtual try-on systems can be roughly

divided into two categories: 3D measurement based models and 2D

image based models. As for the 3D based modeling, virtual try-on

systems mainly depend on users’ 3D body shape measurements.

For example, Hauswiesner et al. [10] proposed a 3D based try-on

method that allows different viewpoints as 3D measurements are

captured by a multi-camera. Besides, Moll et al. [25] introduced

a multi-part 3D model, ClothCap, for virtual try-on by jointly

capturing the garment geometry on a body and the body shape

under the new clothing item. Due to the fact that 3D measurements

can be collected costly, some scholars have resorted to the rich

2D images to fulfil the virtual try-on task. For example, Jetchev

et al. [12] presented a conditional analogy GAN (CAGAN), which

casts the try-on task as an image analogy problem. As a matter of

fact, CAGAN overlooks the clothing item deformation according

to the user’s body shape, and hence suffers from the unsatisfactory

try-on performance. To address this issue, several efforts have

been dedicated to synthesizing the virtual try-on images with

the geometric alignment, such as VITON [9] and CP-VTON [33].

Although existing studies have achieved huge success in virtual

try-on domain, they focused on simply changing the clothing item

and presenting a single try-on viewpoint, but ignoring the fact

that people may want to have different try-on viewpoints with

different poses. Differently, in this work, we aim to devise a novel

try-on system that can simultaneously change the clothing item

and person pose to present a comprehensive try-on effect.

3 METHODOLOGY

In this work, we aim to fulfil the virtual try-on task comprehensively

by not only naturally transferring the given clothing item to the

corresponding part of the person, but also accurately transforming

the person pose to get a novel view of the person. Formally, given

a person image IA, a desired pose PB
8, and a new clothing item

c , our goal is to learn a generator to synthesize the person image

IB in the new clothing item c with the pose PB . To guarantee the
try-on effect and alleviate the burden of the generator, we propose

a bi-stage pose-guided virtual try-on GAN network, as illustrated

in Figure 2. The first stage focuses on deforming the given clothing

item c according to the target pose and the body shape with the

Shape Enhanced Clothing Deformation (Sec. 3.1), where the target

body shape is predicted as an auxiliary guidance. The second stage

works on generating the ultimate try-on image based on the warped

clothing item Tθ (c), the given person image IA, the predicted body

shape Ŝ , and the target pose PB with the Attentive Bidirectional

GAN (Sec. 3.2).

3.1 Shape Enhanced Clothing Deformation

In fact, the target clothing item deformation plays a pivotal role in

generating the natural try-on image. In a sense, the given clothing

8We denote the human pose with 18 heatmaps, each of which corresponds to a keypoint
of the human body.

item c should be warped according to not only the target pose but

also the target human body shape. Due to the fact that the target

body shape is not directly available in our context, we first focus

on the prediction of the target body shape mask, which acts as an

auxiliary guidance on the clothing item deformation.

Body Shape Mask Prediction. In fact, owing to the recent

advance of deep neural networks [24], several efforts have been

dedicated to the pose-guided parsing, which aims to learn the

interplay between the human parsing and human pose. Inspired

by [5], we propose to predict the target body shape mask based on

the given target pose and the conditional body shape of the given

person image.

Let SA (SB ) ∈ R
W ×H denote the binary body shape mask of the

person image IA (IB ), where S
i j
A
= 1 (S

i j
B
= 1) if and only if the

(i, j)-th pixel of the corresponding image refers to the person’s body

part, and S
i j
A
= 0 (S

i j
B
= 0) otherwise. In addition, we define the

network P for the target body shape mask prediction as follows:

ŜB = P(SA, PB |ΘP ), (1)

where ŜB represents the predicted body shape mask in line with

the target pose PB and ΘP refers to the network parameters.

In particular, we devise the body shape mask prediction network

P with the encoder-decoder architecture, where the concatenation

of the given body shape mask SA and desired pose PB are fed as

the input. As the body shape mask prediction can be deemed as a

set of binary classification problems, on the top of the decoder, we

adopt the cross-entropy loss for each entry as follows:

LC =

H∑
i=1

W∑
j=1

[−S
i j
B
log Ŝ

i j
B
− (1 − S

i j
B
) log(1 − Ŝ

i j
B
)]. (2)

In addition, to supervise the body shape mask prediction, we

incorporate the L1 loss for minimizing the difference between the

predicted one and the ground truth:

L1 =
��ŜB − SB

��
1. (3)

Ultimately, we have the following objective function for the target

body shape prediction:

LBodyShape = LC + L1. (4)

Clothing Item Deformation. With the guidance of the above

predicted target body shape mask, we can perform the target

clothing item deformation. Towards this end, we follow the

state-of-the-art Geometric Matching Module (GMM) in [33], a

variant of CNNGeometric [28], which is able to deform the

clothing item naturally by matching it with a cloth-agnostic person

representation. In particular, we define the person information p
as the concatenation of the predicted target body shape mask ŜB
and the target pose PB . We feed the person information p and

the target clothing item c to two convolutional networks to learn

their latent representations, respectively, based on which we can

measure the clothing-person alignment scores with a matching

layer. Thereafter, according to [33], given the alignment scores, we

can obtain the spatial transformation parameters θ by a regression

network, and hence can perform the geometric transformation Tθ
with the thin-plate spline (TPS) layer to derive the warped clothing

item Tθ (c). Essentially, to minimize the discrepancy between the



Figure 2: Illustration of the proposed scheme. Our pipeline is composed of two stages. The Shape Enhanced Clothing

Deformationworks towards warping the new clothing item naturally to align it with the target body shapewhile the Attentive

Bidirectional GAN aims to synthesize the final try-on image.

warped clothing item Tθ (c) and the ground truth ĉ that can be

effortlessly segmented from the target person image IB , we adopt
the L1 loss at the pixel level:

LClothinд = ‖Tθ (c) − ĉ‖1. (5)

Ultimately, the final objective function for shape enhanced

clothing deformation is defined as follows:

LCD = λBSLBodyShape + λCLClothinд , (6)

where λBS and λC are the trade-off parameters.

3.2 Attentive Bidirectional GAN (AB-GAN)

Having obtained the warped clothing item Tθ (c), we can proceed

to the presentation of our pose-guided try-on network, AB-GAN,

which aims to synthesize the ultimate try-on image with the desired

pose and the naturally deformed clothing item. Due to the huge

success of GANs in various image generation tasks, we adopt

the GAN as the backbone of our pose-guided try-on network. A

typical GAN consists of a generator G and a discriminator D,

between whom a min-max strategy game would be performed. The

generator G attempts to fool the discriminator D by generating

realistic images, while the discriminator D tries to distinguish the

synthesized fake images from the real ones.

In our context, we aim to devise a virtual try-on GAN, whose

generator G is able to generate the realistic try-on image ÎB , given
the conditional person image IA ∈ R3×H×W , a desired pose PB ∈

R
18×H×W the warped new clothing item Tθ (c) ∈ R

3×H×W as well

as the auxiliary predicted target body shape mask ŜB ∈ R1×H×W .

Formally, we have:

ÎB = G(IA,Tθ (c), PB , ŜB ). (7)

Try-On Image Generator. To accomplish the above generator,

we introduce a human feature encoder Fhuman , a clothing feature

encoder Fclothinд and a unified try-on image decoder Fdec to our

generator G. In particular, the human feature encoder Fhuman

works on embedding the conditional person image IA and the

desired pose PB and the predicted body shape mask ŜB , while
the clothing feature encoder Fclothinд is designed to extract the

key features of the warped clothing item Tθ (c). Then the network

seamlessly fuses the human features and clothing features by the

dilation-based bottleneck, which has been proved to be effective

in image inpainting [37]. Thereafter, the fused features would be

decoded to the target person image ÎB by the try-on image decoder

Fdec . For each encoder, we adopt the UNet network [11] with skip

connections. In a sense, the skip connections between Fhuman and

Fdec serve to propagate the human appearance and the desired

pose, while those between Fclothinд and Fdec work on transferring

the features of desired clothing item.

In order to push the try-on network to pay more attention to the

(target) try-on area and achieve the natural alignment of the warped

clothing item, we adopt the attention mechanism, which has shown

great success in various computer vision tasks [4, 18, 19]. In a sense,

the attention mechanism serves to help the generator to focus more

on the region that the warped clothing item should be aligned.



Towards this end, we introduce a transformation layer LI that aims

to synthesize a rough target person image ĨB ∈ R3×H×W as the

template, and an attention layer LA for generating the attention

mask A ∈ R1×H×W with the same shape of the person image.

Accordingly, we can generate the target person image ÎB as follows:

ÎB = ĨB � (1 − A) + Tθ (c) � A, (8)

where � denotes element-wise matrix multiplication. In a sense,

the attention mask A weighs the relative importance of the rough

person image ĨB and the warped clothing item Tθ (c) in the final

try-on image generation.

Try-on Network Optimization. As aforementioned, we ex-

pect higher attention scores can be given to the try-on region while

lower scores to elsewhere. Accordingly, we adopt the L1 loss that

is widely used in image generation tasks as follows:

LAtten = EIA [‖M − A‖1] + λTV EIA [‖∇A‖2] , (9)

where M denotes the binary ground truth try-on region mask that

can be easily segmented from the target person image IB . Notably,
the second term refers to the total variation (TV) regularization

[9], which is introduced to penalize the gradients of the attention

mask A and ensure the spatial smoothness. λTV is the trade-off

non-negative hyperparameter.

According to the standard GAN loss that regularizes the

generated ÎB and the ground truth person image IB to come from

the same domain, we have:

LGANB
= EIB∼P [logD (IB )] + EÎB∼P

[
log

(
1 − D(ÎB )

)]
, (10)

where P denotes the data distribution. Apparently, the simple GAN

loss is insufficient to fulfil our task, as a generated person image

with either undesired pose or clothing item cannot meet our initial

requirement no matter how realistic it is. Towards this end, we

adopt the L1 regularization to penalize the loss from the content

perspective. To better characterize the content feature of each

image, we resort to the perceptual features, like the edge, color and

texture features extracted by the pre-trained VGG19 model [30]. In

particular, we comprehensively measure the content loss from both

the pixel and perceptual levels as follows:

LConB =

5∑
i=1

λi

���φi
(
ÎB

)
− φi (IB )

���
1
+
��ÎB − IB

��
1, (11)

where φi (IB ) stands for the feature map of image I regarding the
i-th layer of the pre-trained VGG19. Here, the i-th layer refers to

the layer “conv(i_2)” of VGG19, which is in line with [9, 33].

Inspired by [40], we expect the generator G to be capable of

not only synthesizing a realistic try-on image conditioned on the

given person image, the new clothing item, the desired pose and

the predicted body shape mask, but also rendering back to the

original person image conditioned on original constraints (i.e., the

original pose, original clothing item and original body shape mask).

Accordingly, given the generated try-on image ÎB , the original

pose PA and the original clothing item ĉ , which can be directly

extracted from IA, the generator G should be able to synthesize a

original person image ÎA. It is worth noting that the rendered back

person image ÎA and the original person image IA should keep the

same data distribution. As a result, to regularize the bidirectional

generation consistency, we have:

LGANA
= EIA∼P [logD (IA)] + EÎA∼P

[
log

(
1 − D(ÎA)

)]
, (12)

and

LConA =

5∑
i=1

λi

���φi
(
ÎA

)
− φi (IA)

���
1
+
��ÎA − IA

��
1. (13)

Ultimately, our pose-guided try-on loss can be written as:

L =λGANB
LGANB

+ λGANA
LGANA

+ λAttenLAtten+

λConBLConB + λConALConA ,
(14)

where λGANB
, λGANA

, λAtten , λConB and λConA are the hyper-

parameters that control the relative importance of each loss item.

4 DATASET

Although several fashion datasets have been constructed for the

virtual try-on related tasks, such as the DeepFashion [20], and

Zalando Dataset [9], they can only support the conventional try-

on tasks. For example, DeepFashion contains numerous person

images with different poses, which can only facilitate the pose

transformation research; whereas in our scenario, we need the

ground truth image with both the target clothing item and the

target pose. In fact, it is intractable to build an ideal training dataset

of triplets, each of which comprises a conditional person image, a

new clothing item image and the target person image wearing the

new clothing item with the target pose. Fortunately, inspired by

VITON [9], we can train our model with the slightly modified triplet,

where the target person image share the same clothing item with

the conditional person image (i.e., the new clothing item is exactly

the original one). Accordingly, to create our virtual try-on dataset,

we turn to the fashion-oriented e-commercial website Zalando9,

where each clothing item is associated with multiple fashion model

images with different poses wearing it. In total, we crawled 4, 327

clothing items with their corresponding model images.

To ensure the quality of our dataset, we removed the noisy

model images that only show limited part of, even without, the

human body. In particular, we extracted the keypoints of each

model image by the state-of-the-art pose estimator [2]. Based on

the presence of these keypoints, we removed the images with less

than 10 keypoints, as they indicate the limited human body parts.

Ultimately, we obtained our FashionTryOn dataset, consisting of

28, 714 triplets with each comprising one clothing item image and

two model images in different poses, corresponding to the original

(conditional) person image and the target person image. Notably,

all images are resized to 256 × 192.

5 EXPERIMENTS

To evaluate the proposed method, we conducted extensive

experiments on the real-world dataset FashionTryOn by answering

the following research questions:

• Does AB-GAN outperform the state-of-the-art methods?

• What is the performance of our shape enhanced clothing

deformation?

9www.zalando.com/.



Figure 3: The left is the original person image, while the

right is the same image overlaid with a clothing mask.

• How do the key components of our pipeline affect the final

try-on image synthesis?

5.1 Implementation Details

Here we give the implementation details of our work.

Pose Embedding. Similar to [9], we first extracted the pose

of each person image with the state-of-the-art pose estimator [2],

where coordinates of 18 human body keypoints can be obtained.

Based on these coordinates, we derived 18 binary heatmaps for

the keypoints, respectively. Each heatmap is filled with all zeros,

except for the ones in the neighborhood area of 11 × 11 around each

keypoint. Afterwards, all heatmaps are stacked into 18 channels,

embedding the pose information of the person image.

Network Architecture. For the body shape mask prediction

module in the shape enhanced clothing deformation, we adopted the

ResNet-like architecture, as it has shown remarkable performance

in various generation tasks [5, 40]. In particular, we designed the

encoder with one 1-strided convolutional layer and three 2-strided

ones followed by nine residual blocks, while the decoder with three

2-strided deconvolutional layers as well as two 1-strided ones. All

convolutional layers are followed by the Instance Normalization

and Relu activation functions, except for the last layer which takes

the softmax activation function. As for the clothing deformation

module, following the network structure of the GMM in [33], we

devised both the person and clothing item feature encoder networks

with four 2-strided convolutional layers and two 1-strided ones.

Then we deployed the regression network with two 2-strided

convolutional layers, two 1-strided ones and one fully-connected

layer. The structure of the matching layer and TPS layer are similar

to those in CNNGeometric [28].

Pertaining to the pose-guided try-on image generation, both

the human feature encoder and the clothing feature encoder have

four down-sampling convolutional layers, whose numbers of 3 × 3

filters are 64, 128, 256 and 512, respectively. The dilation-based

bottleneck consists of three dilation blocks with the dilation rates

of 1, 2 and 4, respectively. All three blocks have 512 filters of the

size 3 × 3. The architecture of the decoder is symmetric to that of

the human/clothing feature encoder. Regarding the discriminator,

we adopted the same architecture as pixel2pixel [11].

Optimization.We split our dataset into two trucks: the training

set with 21, 197 triples and the testing set with 7, 517 triples. In all

experiments, we used the Adam [14] optimizer with β1 = 0.5,

β2 = 0.999, and a fixed learning rate of 0.0001. For training the

shape enhanced clothing deformation, to boost the performance,

we pre-trained our body shape mask prediction module for 100K
steps and clothing deformation module for 200K steps, respectively.

Then we fine-tuned the shape enhanced clothing deformation with

Table 1: Performance of different methods.

Method SSIM ↑ L1 Error ↓ VGG Error↓

UNet 0.7032 0.2064 0.6588

CP-VTON 0.7040 0.1937 0.6193

Vari-UNet+CAGAN 0.6055 0.2473 0.8506

CA-GAN+Vari-UNet 0.7580 0.1580 0.5119

Vari-UNet+CP-VTON 0.7335 0.1963 0.5719

CP-VTON+Vari-UNet 0.7582 0.1574 0.5203

Ours 0.7541 0.1230 0.5272

λBS = 1 and λC = 1. To avoid the artifacts caused by the conflict

of the body shape and the clothing item, similar to [9], we first

down-sampled the predicted body shape mask to 16 × 12 and then

reconstructed it back to 256× 192. For the try-on image generation,

we trained our attentive bidirectional GAN for 200K steps, where

λGANB
= 0.1, λGANA

= 0.1, λAtten = 1, λConB = 5, λConA = 5,

and λTV = 0.0001. The batch size of all experiments are set as 4.

5.2 Baselines

Due to the fact of lacking proper baselines for our novel task,

we introduced six baselines for the performance comparison: two

pipelines to simultaneously transform the pose of the person and

overlay the desired clothing item, two pipelines that first transform

the pose then change the clothing item, and two pipelines that first

transfer the clothing item onto the person and then synthesize the

final try-on image with the desired pose.

UNet. We employed the UNet in [11] as one baseline. In

particular, we adapted to take the concatenation of the predicted

body shape mask, the desired pose, the warped clothing item and

the 3-channel head segmentation10 as the input and employed L1

loss and VGG loss for optimization.

CP-VTON.As CP-VTON [33] is originally designed to tackle the

simple try-on task of overlaying a new clothing item on the person,

for fairness, we adapted it by feeding the same concatenation as

UNet for this baseline.

Vari-UNet+CP-VTON. In this baseline, we first utilized the

Vari-UNet [6] for the pose transformation, and then applied the

CAGAN [12] to change the clothing item.

Vari-UNet+CAGAN. Similarly, here we first performed the

pose transformation by Vari-UNet, followed by the clothing item

replacement by CAGAN.

CP-VTON+Vari-UNet. In the similar manner, we changed the

order of Vari-UNet and CP-VTON in Vari-UNet+CP-VTON to

replace the clothing item before changing the person’s pose.

CAGAN+Vari-UNet. Similarly, we changed the order of Vari-

UNet and CAGAN in Vari-UNet+CAGAN.

5.3 On Model Comparison (RQ1)

To get a thorough understanding of our model, we performed both

the quantitative and qualitative evaluations.

Quantitative Evaluation. Following [1], we adopted the

Structure Similarly Index Measure (SSIM) [34], L1 error and VGG

error [13] to measure the quality of synthesized images by different

models. In particular, SSIM measures the similarity between the

synthesized image and the ground truth image based on the three

10The head segmentation is obtained with the help of the state-of-the-art LIP human
parser [7].



Figure 4: Try-on results of different methods.

aspects of brightness, structure and contrast, ranging from 0 to

1. Both the L1 error and VGG error assess the content difference

between the synthesized image and the ground truth image.

As aforementioned, the conditional and target person images in

each triplet of our dataset share the same clothing item. Therefore,

for the quantitative evaluation, we overlaid a clothing mask of

all zeros on the try-on region of the testing conditional person

image, illustrated in Figure 3. To be specific, we utilized the LIP

human parser [7] to obtain the try-on region. Table 1 shows the

performance of different methods with respect to SSIM, L1 error

and VGG error. As can be seen, our model consistently outperforms

all the baselines in terms of the L1 error and achieves comparable

results regarding the SSIM and the VGG error. The philosophy

behind may be that our method adopts two encoders for extracting

the human features and clothing features, respectively, rather than

the single encoder that is used by baselines, like CP-VTON and

Vari-UNet+CP-VTON. Moreover, we incorporated both the content

loss and bidirectional generation consistency that can regularize

the generator to render more sharp and realistic images with less

content loss. In addition, we observed that CAGAN+Vari-UNet

and CP-VTON+Vari-UNet surpass Vari-UNet+CAGAN and Vari-

UNet+CP-VTON, respectively, suggesting that it is advisable to

change the clothing item before transforming the human pose. The

plausible explanation is that the prior pose transformation can

make the following clothing try-on more difficult by introducing

misalignments between the human pose and the clothing item.

Meanwhile, the pose transformation pipeline Vari-UNet that

disentangles the human shape and appearance can be insensitive

to the appearance noises caused by the simple clothing try-on

pipelines and contributes the better performance of CAGAN+Vari-

UNet and CP-VTON+Vari-UNet.

Qualitative Evaluation. Towards the qualitative evaluation,

we first shuffled the clothing item images in the testing dataset

to ensure the clothing item of the target person image is different

from that of the conditional person image. Figure 4 shows the

try-on results of different methods. From this figure, we can

draw the following observations: 1) our method achieves the

best visual try-on effects as compared to all the baselines. The

synthesized person image of our method not only meets the

desired pose but also realizes the natural change of clothing item.

2) Although the stacked pipelines (e.g., CAGAN+Vari-UNet and

CPVTON+Vari-UNet) obtain promising scores pertaining to the

quantitative evaluation, the try-on results are unsatisfactory as the

detailed visual features, like the pattern and color, of the target

clothing item cannot be well preserved, which is improper for

our try-on task. 3) CP-VTON+Vari-UNet can be seen as the best

baseline while Vari-UNet+CAGAN the worst. The strange try-on

results (see the 2-nd and 4-th cases) of Vari-UNet+CAGAN may be

attributed to the lack of effective clothing deformation in CAGAN.

4) Interestingly, although Vari-UNet+CPVTON performs worse

than CPVTON+Vari-UNet in the quantitative evaluation, Vari-

UNet+CPVTON surpasses CPVTON+Vari-UNet in terms of the

qualitative try-on effect assessment, as more clothing details are

successfully transferred by Vari-UNet+CPVTON. This reconfirms

the importance of the order in performing the clothing item try-on

and the pose transformation.

5.4 On Clothing Deformation (RQ2)

To evaluate our shape enhanced clothing deformation (SECD)

model, we compared it with the GMM in CP-VTON [33]. Figure 5

shows the qualitative evaluation of our SECD and GMM. We

noticed that SECD outperforms GMM in terms of both the clothing



Figure 5: Matching results of SECD and GMM.

deformation quality and the clothing alignment with the target

person. As can be seen, GMM can lead to the abnormal deformations

(see the 4-th case) and the misalignments of the clothing item (see

the 2-nd case). The underlying philosophy is that the GMM learns

the clothing mapping directly based on the conditional body shape

mask and the desired human pose, where the potential of the target

human body shape in the guidance of the clothing deformation is

overlooked. On the contrary, our method takes the body shapemask

prediction as an intermediate step to enhance the performenace. As

we can see, the predicted body shape masks can roughly capture

the target body shapes, and hence promote the performance on

clothing alignment. This suggests that it is advisable to incorporate

the target body shape mask as an auxiliary guidance towards the

clothing deformation in the complex virtual try-on task.

5.5 On Ablation Study (RQ3)

To get a better understand of our pipeline, we conducted

the ablation study on three key components of our pipeline:

target body shape prediction, the attention mechanism and the

bidirectional generation consistency. Accordingly, we introduced

three ablation baseline: w/o body shape, w/o attention and

w/o consistency, which can be derived from our pipeline by

disabling the corresponding module. Table 2 shows the quantitative

experiment results of different ablation methods. As can be seen,

our pipeline shows superiority over each w/o ablation method,

verifying the importance of the predicted body shape mask in

guiding the clothing deformation, and the attention mechanism as

well as the bidirectional generation consistency in the final try-on

image generation. Figure 6 shows the qualitative results of different

pipelines. For the better illustration, we also listed the learned

attention masks of our full pipeline. As can be seen, the qualitative

results are consistent with the quantitative ones: 1) our full pipeline

Table 2: Performance of different ablation methods.

Method SSIM ↑ L1 Error ↓ VGG Error↓

w/o Attention 0.7343 0.1466 0.5652

w/o Consistency 0.7374 0.1457 0.5656

w/o Body Shape 0.7118 0.1642 0.5995

Ours 0.7541 0.1230 0.5272

Figure 6: Results of our pipeline and the ablation methods.

surpasses the w/o body shape pipeline, as the latter fails to align the

clothing item accurately with the human’s body, implying that the

predicted body shape mask does provide the auxiliary guidance for

the clothing alignment. 2) Our full pipeline synthesizesmore natural

person images than the w/o consistency pipeline. One plausible

explanation is that the bidirectional generation consistency can

propel the generator to synthesize realistic person images while

ignoring noises caused by the abnormal clothing deformations,

and ultimately boosts the robustness of the generator. And 3) our

pipeline outperforms the w/o attention pipeline in terms of the

detailed feature (e.g., the pattern) preservation of the clothing

item. The underlying philosophy is that the generator without

the guidance of the attention mask can fail to focus on the try-on

region, and hence missing the texture details of the clothing item.

6 CONCLUSION AND FUTUREWORK

In this paper, we presented a novel bi-stage pose-guided virtual

try-on pipeline to address a new task of virtually trying on a new

clothing item with the desired pose. In particular, in the first stage,

we proposed a shape enhanced clothing deformation scheme to

accurately warp the given new clothing item, where a target human

body shape mask prediction module is introduced to provide the

intermediate guidance for the clothing deformation. In the second

stage, we proposed an attentive bidirectional generation adversarial

network, AB-GAN, to generate the final try-on person image, which

jointly regularizes the attentive clothing-person alignment and

bidirectional generation consistency. Moreover, we constructed

a large-scale dataset, FashionTryOn, comprising 28, 714 clothing-

person-person triplets. Extensive experiments have been conducted

on FashionTryOn, and the qualitative and quantitative results show

the superiority of our pipeline over the state-of-the-art methods.

Interestingly, we found that introducing the target body shape

mask as an guidance in clothing deformation dose help to boost the

performance. In the future, we plan to enhance our try-on scheme

to further cope with the clothing matching problem, where a try-on

image in a complete and compatible outfit would be synthesized.
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